Quantile
Edit this pageThe quantile transform calculates empirical quantile values for an input data stream. If a groupby parameter is provided, quantiles are estimated separately per group. Among other uses, the quantile transform is useful for creating quantile-quantile (Q-Q) plots.
// Any View Specification
{
...
"transform": [
{"quantile": ...} // Quantile Transform
...
],
...
}
Quantile Transform Definition
Property | Type | Description |
---|---|---|
quantile | String |
Required. The data field for which to perform quantile estimation. |
groupby | String[] |
The data fields to group by. If not specified, a single group containing all data objects will be used. |
probs | Number[] |
An array of probabilities in the range (0, 1) for which to compute quantile values. If not specified, the step parameter will be used. |
step | Number |
A probability step size (default 0.01) for sampling quantile values. All values from one-half the step size up to 1 (exclusive) will be sampled. This parameter is only used if the probs parameter is not provided. |
as | String[] |
The output field names for the probability and quantile values. Default value: |
Usage
{"quantile": "measure", "probs": [0.25, 0.5, 0.75]}
Computes the quartile boundaries for the "measure"
field. The output data is of the form:
[
{prob: 0.25, value: 1.34},
{prob: 0.5, value: 5.82},
{prob: 0.75, value: 9.31}
];
{"quantile": "measure", "step": 0.05}
Computes quantiles for the "measure"
field over equal-sized probability steps. The output data is of the form:
[{prob: 0.025, value: 0.01}, {prob: 0.075, value: 0.02}, ...{prob: 0.975, value: 0.2}];
Example: Quantile-Quantile Plot
A quantile-quantile plot comparing input data to theoretical distributions: